Die Wahrscheinlichkeitstheorie, auch Wahrscheinlichkeitsrechnung oder Probabilistik, ist ein Teilgebiet der Mathematik, das aus der Formalisierung, der Modellierung und der Untersuchung von Zufallsgeschehen hervorgegangen ist. Gemeinsam mit der mathematischen Statistik, die anhand von Beobachtungen zufälliger Vorgänge Aussagen über das zugrunde liegende Modell trifft, bildet sie das mathematische Teilgebiet der Stochastik.
Die zentralen Objekte der Wahrscheinlichkeitstheorie sind zufällige Ereignisse, Zufallsvariablen und stochastische Prozesse.
Axiomatischer Aufbau
Wie jedes Teilgebiet der modernen Mathematik wird auch die Wahrscheinlichkeitstheorie mengentheoretisch formuliert und auf axiomatischen Vorgaben aufgebaut. Ausgangspunkt der Wahrscheinlichkeitstheorie sind Ereignisse, die als Mengen aufgefasst werden und denen Wahrscheinlichkeiten zugeordnet sind; Wahrscheinlichkeiten sind reelle Zahlen zwischen 0 und 1; die Zuordnung von Wahrscheinlichkeiten zu Ereignissen muss gewissen Mindestanforderungen genügen.
Diese Definitionen geben keinen Hinweis darauf, wie man die Wahrscheinlichkeiten einzelner Ereignisse ermitteln kann; sie sagen auch nichts darüber aus, was Zufall und was Wahrscheinlichkeit eigentlich sind. Die mathematische Formulierung der Wahrscheinlichkeitstheorie ist somit für verschiedene Interpretationen offen, ihre Ergebnisse sind dennoch exakt und vom jeweiligen Verständnis des Wahrscheinlichkeitsbegriffs unabhängig.
Definitionen
Konzeptionell wird als Grundlage der mathematischen Betrachtung von einem Zufallsvorgang oder Zufallsexperiment ausgegangen. Alle möglichen Ergebnisse dieses Zufallsvorgangs fasst man in der Ergebnismenge zusammen. Häufig interessiert man sich jedoch gar nicht für das genaue Ergebnis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega \in \Omega } , sondern nur dafür, ob es in einer bestimmten Teilmenge der Ergebnismenge liegt, was so interpretiert werden kann, dass ein Ereignis eingetreten ist oder nicht. Ein Ereignis ist also als eine Teilmenge von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } definiert. Enthält das Ereignis genau ein Element der Ergebnismenge, handelt es sich um ein Elementarereignis. Zusammengesetzte Ereignisse enthalten mehrere Ergebnisse. Das Ergebnis ist also ein Element der Ergebnismenge, das Ereignis jedoch eine Teilmenge.
Damit man den Ereignissen in sinnvoller Weise Wahrscheinlichkeiten zuordnen kann, werden sie in einem Mengensystem aufgeführt, der Ereignisalgebra oder dem Ereignissystem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma } über , einer Menge von Teilmengen von , für die gilt: Sie enthält Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } und ist ein σ-Körper, d. h., sie ist gegenüber den Mengenoperationen der Vereinigung und der Komplementbildung (relativ bzgl. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } ) abgeschlossen genauso wie gegenüber der unendlichen Vereinigung abzählbar vieler Mengen. Die Wahrscheinlichkeiten sind dann Bilder einer gewissen Abbildung des Ereignisraums in das Intervall [0,1]. Solch eine Abbildung heißt Wahrscheinlichkeitsmaß. Das Tripel Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Omega ,\Sigma ,P)} wird als Wahrscheinlichkeitsraum bezeichnet.
Axiome von Kolmogorow
Die axiomatische Begründung der Wahrscheinlichkeitstheorie wurde in den 1930er Jahren von Andrei Kolmogorow entwickelt. Ein Wahrscheinlichkeitsmaß muss demnach folgende drei Axiome erfüllen:
Axiome:
- Für jedes Ereignis ist die Wahrscheinlichkeit von eine reelle Zahl zwischen 0 und 1: .
- Das sichere Ereignis hat die Wahrscheinlichkeit 1: .
- Die Wahrscheinlichkeit einer Vereinigung abzählbar vieler inkompatibler Ereignisse ist gleich der Summe der Wahrscheinlichkeiten der einzelnen Ereignisse. Dabei heißen Ereignisse inkompatibel, wenn sie paarweise disjunkt sind, also bei für alle . Es gilt daher . Diese Eigenschaft wird auch σ-Additivität genannt.
Beispiel: Im Rahmen einer physikalischen Modellbildung wird ein Wahrscheinlichkeitsmaß zur Beschreibung des Ergebnisses eines Münzwurfes angesetzt, die möglichen Ergebnisse (Ereignisse genannt) mögen Zahl und Kopf lauten.
- Dann ist die Ergebnismenge .
- Als Ereignisraum kann die Potenzmenge gewählt werden, also .
- Für das Wahrscheinlichkeitsmaß steht aufgrund der Axiome fest:
Zusätzliche physikalische Annahmen über die Beschaffenheit der Münze können nun etwa zur Wahl führen.
Folgerungen
Aus den Axiomen ergeben sich unmittelbar einige Folgerungen:
1. Aus der Additivität der Wahrscheinlichkeit disjunkter Ereignisse folgt, dass komplementäre Ereignisse (Gegenereignisse) komplementäre Wahrscheinlichkeiten (Gegenwahrscheinlichkeiten) haben: .
- Beweis: Es ist sowie . Folglich nach Axiom (3): und dann nach Axiom (2): . Umgestellt ergibt sich: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\Omega \setminus A)=1-P(A)} .
2. Daraus folgt, dass das unmögliche Ereignis, die leere Menge, die Wahrscheinlichkeit Null hat: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\emptyset )=0} .
- Beweis: Es ist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset \cup \Omega =\Omega } und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset \cap \Omega =\emptyset } , also nach Axiom (3): . Hieraus folgt Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\emptyset )=0} .
3. Für die Vereinigung nicht notwendig disjunkter Ereignisse folgt: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\cup B)=P(A)+P(B)-P(A\cap B)} .
- Beweis: Die für den Beweis erforderlichen Mengen sind im obigen Bild dargestellt. Die Menge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\cup B} kann danach als Vereinigung von drei disjunkten Mengen dargestellt werden:
- Hieraus folgt nach (3): Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\cup B)=P(A\setminus B)+P(A\cap B)+P(B\setminus A)} .
- Andererseits ist nach (3) sowohl
- als auch
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(B)=P(A\cap B)+P(B\setminus A)} .
- Addition liefert:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)+P(B)=P(A\setminus B)+P(A\cap B)+P(A\cap B)+P(B\setminus A)=P(A\cup B)+P(A\cap B)} .
- Umstellen ergibt Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\cup B)=P(A)+P(B)-P(A\cap B)} .
- Die Siebformel von Poincaré-Sylvester verallgemeinert diese Behauptung im Falle n verschiedener (nicht notwendig disjunkter) Teilmengen.
Im Weiteren ist zwischen abzählbaren und überabzählbaren Ergebnismengen zu unterscheiden.
Abzählbare Ergebnismenge
Bei einer abzählbaren Ergebnismenge kann jedem Elementarereignis eine positive Wahrscheinlichkeit zugewiesen werden. Wenn Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } endlich oder abzählbar unendlich ist, kann man für die σ-Algebra die Potenzmenge von wählen. Die Summe der Wahrscheinlichkeiten aller Elementarereignisse aus ist hier 1.
Überabzählbare Ergebnismenge
Ein Prototyp einer überabzählbaren Ergebnismenge ist die Menge der reellen Zahlen. In vielen Modellen ist es nicht möglich, allen Teilmengen der reellen Zahlen sinnvoll eine Wahrscheinlichkeit zuzuordnen. Als Ereignissystem wählt man statt der Potenzmenge der reellen Zahlen hier meist die Borelsche σ-Algebra, das ist die kleinste σ-Algebra, die alle Intervalle von reellen Zahlen als Elemente enthält. Die Elemente dieser σ-Algebra nennt man Borelsche Mengen oder auch (Borel-)messbar. Wenn die Wahrscheinlichkeit jeder Borelschen Menge als Integral
über eine Wahrscheinlichkeitsdichte geschrieben werden kann, wird absolut stetig genannt. In diesem Fall (aber nicht nur in diesem) haben alle Elementarereignisse {x} die Wahrscheinlichkeit 0. Die Wahrscheinlichkeitsdichte eines absolut stetigen Wahrscheinlichkeitsmaßes ist nur fast überall eindeutig bestimmt, d. h., sie kann auf einer beliebigen Lebesgue-Nullmenge, also einer Menge vom Lebesgue-Maß 0, abgeändert werden, ohne dass verändert wird. Wenn die erste Ableitung der Verteilungsfunktion von existiert, so ist sie eine Wahrscheinlichkeitsdichte von P. Die Werte der Wahrscheinlichkeitsdichte werden jedoch nicht als Wahrscheinlichkeiten interpretiert.
Spezielle Eigenschaften im Fall diskreter Wahrscheinlichkeitsräume
Laplace-Experimente
Wenn man annimmt, dass nur endlich viele Elementarereignisse möglich und alle gleichberechtigt sind, d. h. mit der gleichen Wahrscheinlichkeit eintreten (wie zum Beispiel beim Werfen einer idealen Münze, wobei {Zahl} und {Kopf} jeweils die Wahrscheinlichkeit 0,5 besitzen), so spricht man von einem Laplace-Experiment. Dann lassen sich Wahrscheinlichkeiten einfach berechnen: Wir nehmen eine endliche Ergebnismenge an, die die Mächtigkeit besitzt, d. h., sie hat Elemente. Dann ist die Wahrscheinlichkeit jedes Elementarereignisses einfach .
- Beweis: Wenn ist, dann gibt es Elementarereignisse . Es ist dann einerseits und andererseits sind je zwei Elementarereignisse disjunkt (inkompatibel: wenn das eine eintritt, kann das andere nicht eintreten). Also sind die Voraussetzungen für Axiom (3) erfüllt, und es gilt:
- Da nun andererseits sein soll, ist und daher umgestellt: , wie behauptet.
Als Konsequenz folgt, dass für Ereignisse, die sich aus mehreren Elementarereignissen zusammensetzen, die entsprechend vielfache Wahrscheinlichkeit gilt. Ist ein Ereignis der Mächtigkeit , so ist die Vereinigung von Elementarereignissen. Jedes davon hat die Wahrscheinlichkeit , also ist . Man erhält also den einfachen Zusammenhang
Bei Laplace-Versuchen ist die Wahrscheinlichkeit eines Ereignisses gleich der Zahl der für dieses Ereignis günstigen Ergebnisse, dividiert durch die Zahl der insgesamt möglichen Ergebnisse.
Nachstehend ein Beispiel beim Würfeln mit einem idealen Würfel.
- ⚀⚁⚂⚃⚄⚅
- ⚄⚅
Das Ereignis = Hohe Augenzahl (5 oder 6) hat die Wahrscheinlichkeit 1/3.
Ein typischer Laplace-Versuch ist auch das Ziehen einer Karte aus einem Spiel mit Karten oder das Ziehen einer Kugel aus einer Urne mit Kugeln. Hier hat jedes Elementarereignis die gleiche Wahrscheinlichkeit. Um die Anzahl der Elementarereignisse bei Laplace-Versuchen zu bestimmen, werden häufig Methoden der Kombinatorik verwendet.
Das Konzept der Laplace-Experimente lässt sich auf den Fall einer stetigen Gleichverteilung verallgemeinern.
Bedingte Wahrscheinlichkeit
Unter einer bedingten Wahrscheinlichkeit versteht man die Wahrscheinlichkeit für das Eintreten eines Ereignisses unter der Voraussetzung, dass das Eintreten eines anderen Ereignisses bereits bekannt ist. Natürlich muss eintreten können, es darf also nicht das unmögliche Ereignis sein. Man schreibt dann oder seltener für „Wahrscheinlichkeit von unter der Voraussetzung “, kurz „ von , vorausgesetzt “.
Beispiel: Die Wahrscheinlichkeit, aus einem Skatblatt eine Herz-Karte zu ziehen (Ereignis ), beträgt 1/4, denn es gibt 32 Karten und darunter 8 Herz-Karten. Dann ist . Das Gegenereignis ist dann Karo, Pik oder Kreuz und hat deshalb die Wahrscheinlichkeit .
Wenn nun aber bereits das Ereignis „Die Karte ist rot“ eingetreten ist (es wurde eine Herz- oder Karo-Karte gezogen, es ist aber nicht bekannt, welche der beiden Farben), man also nur noch die Auswahl unter den 16 roten Karten hat, dann ist die Wahrscheinlichkeit, dass es sich dann um das Herz-Blatt handelt.
Diese Überlegung galt für einen Laplaceversuch. Für den allgemeinen Fall definiert man die bedingte Wahrscheinlichkeit von „, vorausgesetzt “ als
Dass diese Definition sinnvoll ist, zeigt sich daran, dass die so definierte Wahrscheinlichkeit den Axiomen von Kolmogorow genügt, wenn man sich auf als neue Ergebnismenge beschränkt; d. h., dass gilt:
- Wenn paarweise disjunkt sind, so ist
Beweis:
- ist Quotient zweier Wahrscheinlichkeiten, für welche nach Axiom (1) gilt und . Da nicht das unmögliche Ereignis sein soll, ist sogar . Also gilt auch für den Quotienten . Ferner sind und disjunkt, und ihre Vereinigung ist . Also ist nach Axiom (3): .
Da ist, folgt und daher . - Es ist
- Des Weiteren ergibt sich:
- Dies war zu zeigen.
Beispiel: Es sei wie oben das Ereignis „Ziehen einer Herz-Karte“ und das Ereignis „Es ist eine rote Karte“. Dann ist:
und
Folglich gilt:
Aus der Definition der bedingten Wahrscheinlichkeit ergeben sich folgende Konsequenzen:
Verbundwahrscheinlichkeit (Schnittmengen von Ereignissen)
Das gleichzeitige Eintreten zweier Ereignisse und entspricht mengentheoretisch dem Eintreten des Verbund-Ereignisses . Die Wahrscheinlichkeit hiervon berechnet sich zur gemeinsamen Wahrscheinlichkeit oder Verbundwahrscheinlichkeit
Beweis: Nach Definition der bedingten Wahrscheinlichkeit ist einerseits
und andererseits auch
Umstellen nach liefert dann sofort die Behauptung.
Beispiel: Es wird eine Karte aus 32 Karten gezogen. sei das Ereignis: „Es ist ein König“. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} sei das Ereignis: „Es ist eine Herz-Karte“. Dann ist das gleichzeitige Eintreten von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} , also das Ereignis: „Die gezogene Karte ist ein Herz-König“. Offenbar ist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)={\tfrac {4}{32}}={\tfrac {1}{8}}} . Ferner ist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(B|A)={\tfrac {1}{4}}} , denn es gibt nur eine Herz-Karte unter den vier Königen. Und in der Tat ist dann Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\cap B)=P(A)\cdot P(B\vert A)={\tfrac {1}{8}}\cdot {\tfrac {1}{4}}={\tfrac {1}{32}}} die Wahrscheinlichkeit für den Herz-König.
Satz von Bayes
Die bedingte Wahrscheinlichkeit von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} unter der Bedingung Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} lässt sich durch die bedingte Wahrscheinlichkeit von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} unter der Bedingung Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} durch
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\mid B)={\frac {P(B\mid A)\cdot P(A)}{P(B)}}}
ausdrücken, wenn man die totalen Wahrscheinlichkeiten Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(B)} und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)} kennt (Satz von Bayes).
Abhängigkeit und Unabhängigkeit von Ereignissen
Ereignisse nennt man unabhängig voneinander, wenn das Eintreten des einen die Wahrscheinlichkeit des anderen nicht beeinflusst. Im umgekehrten Fall nennt man sie abhängig. Man definiert:
- Zwei Ereignisse Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} und sind unabhängig, wenn gilt.
- Ungenau, aber einprägsam formuliert: Bei unabhängigen Ereignissen kann man die Wahrscheinlichkeiten multiplizieren.
Dass dies dem Begriff „Unabhängigkeit“ gerecht wird, erkennt man durch Umstellen nach Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)} :
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)={\frac {P(A\cap B)}{P(B)}}=P(A\vert B).}
Das bedeutet: Die totale Wahrscheinlichkeit für Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} ist ebenso groß wie die Wahrscheinlichkeit für Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , vorausgesetzt Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} ; das Eintreten von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} beeinflusst also die Wahrscheinlichkeit von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} nicht.
Beispiel: Es wird eine aus 32 Karten gezogen. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} sei das Ereignis „Es ist eine Herz-Karte“. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} sei das Ereignis „Es ist eine Bild-Karte“. Diese Ereignisse sind unabhängig, denn das Wissen, dass man eine Bild-Karte zieht, beeinflusst nicht die Wahrscheinlichkeit, dass es eine Herz-Karte ist (Der Anteil der Herz-Karten unter den Bilder-Karten ist ebenso groß wie der Anteil der Herz-Karten an allen Karten). Offenbar ist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)={\tfrac {8}{32}}={\tfrac {1}{4}}} und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(B)={\tfrac {12}{32}}={\tfrac {3}{8}}} . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\cap B} ist das Ereignis „Es ist eine Herz-Bildkarte“. Da es davon drei gibt, ist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\cap B)={\tfrac {3}{32}}} . Und in der Tat stellt man fest, dass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\tfrac {1}{4}}\cdot {\tfrac {3}{8}}={\tfrac {3}{32}}} ist.
Ein weiteres Beispiel für sehr kleine und sehr große Wahrscheinlichkeiten findet sich in Infinite-Monkey-Theorem.
Maßtheoretische Sichtweise
Die klassische Wahrscheinlichkeitsrechnung betrachtet nur Wahrscheinlichkeiten auf diskreten Wahrscheinlichkeitsräumen und stetige Modelle mit Dichtefunktionen. Diese beiden Ansätze lassen sich durch die moderne Formulierung der Wahrscheinlichkeitstheorie, die auf den Konzepten und Ergebnissen der Maß- und Integrationstheorie beruht, vereinheitlichen und verallgemeinern.
Wahrscheinlichkeitsräume
In dieser Sichtweise ist ein Wahrscheinlichkeitsraum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Omega ,\Sigma ,P)} ein Maßraum mit einem Wahrscheinlichkeitsmaß Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} . Das bedeutet, die Ergebnismenge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } ist eine beliebige Menge, der Ereignisraum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma } ist eine σ-Algebra mit Grundmenge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P\colon \Sigma \to [0,1]} ist ein Maß, das durch Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\Omega )=1} normiert ist.
Wichtige Standardfälle von Wahrscheinlichkeitsräumen sind:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } ist eine abzählbare Menge und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma } ist die Potenzmenge von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } . Dann ist jedes Wahrscheinlichkeitsmaß Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} eindeutig festgelegt durch seine Werte Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\{\omega \})} auf den einelementigen Teilmengen von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } und für alle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\in \Sigma } gilt
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)=\sum _{\omega \in A}P(\{\omega \})} .
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } ist eine Teilmenge von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb {R} ^{n}} und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma } ist die Borelsche σ-Algebra auf Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } . Ist das Wahrscheinlichkeitsmaß Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} absolut stetig bezüglich des Lebesgue-Maßes, dann besitzt Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} nach dem Satz von Radon-Nikodým eine Lebesgue-Dichte Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} , d. h., für alle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\in \Sigma } gilt
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A)=\int _{A}f(x)\,\mathrm {d} x} .
- Umgekehrt wird für eine nichtnegative messbare Funktion Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} , welche die Normierungsbedingung Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \int _{\Omega }f(x)\,dx=1} erfüllt, durch diese Formel ein Wahrscheinlichkeitsmaß auf Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } definiert.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \Omega =\prod _{i\in I}\Omega _{i}} ist ein kartesisches Produkt und Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \Sigma =\bigotimes _{i\in I}\Sigma _{i}} ist die Produkt-σ-Algebra von σ-Algebren Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma _{i}} auf Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega _{i}} . Sind Wahrscheinlichkeitsmaße Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{i}} auf Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega _{i}} gegeben, dann wird durch das Produktmaß Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle P=\bigotimes _{i\in I}P_{i}} ein Wahrscheinlichkeitsmaß auf Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega } definiert, das die unabhängige Hintereinanderausführung der Einzelexperimente Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Omega _{i},\Sigma _{i},P_{i})_{i\in I}} modelliert.
Zufallsvariable
Eine Zufallsvariable ist das mathematische Konzept für eine Größe, deren Wert vom Zufall abhängig ist. Aus maßtheoretischer Sicht handelt es sich um eine messbare Funktion Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} auf einem Wahrscheinlichkeitsraum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Omega ,\Sigma ,P)} in einen Messraum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\Omega ',\Sigma ')} bestehend aus einer Menge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega '} und einer σ-Algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma '} auf Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega '} . Messbarkeit bedeutet dabei, dass für alle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A'\in \Sigma '} das Urbild Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^{-1}(A')} ein Element der σ-Algebra Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma } ist. Die Verteilung von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} ist dann nichts anderes als das Bildmaß
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{X}:=P\circ X^{-1}:\Sigma '\to [0,1],\quad P\circ X^{-1}(A')=P(X^{-1}(A'))} ,
das von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} auf dem Messraum induziert wird und diesen zu einem Wahrscheinlichkeitsraum macht.
Der Erwartungswert einer reellwertigen Zufallsvariable mittelt die möglichen Ergebnisse. Er lässt sich abstrakt definieren als Integral von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} bezüglich des Wahrscheinlichkeitsmaßes :
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname {E} (X)=\int _{\Omega }X\,\mathrm {d} P} .
Wahrscheinlichkeitstheorie und Statistik
Wahrscheinlichkeitstheorie und mathematische Statistik werden zusammenfassend auch als Stochastik bezeichnet. Beide Gebiete stehen in enger wechselseitiger Beziehung:
- Statistische Verteilungen werden regelmäßig unter der Annahme modelliert, dass sie das Resultat zufälliger Prozesse sind.
- Statistische Verfahren können auf numerische Weise Anhaltspunkte für das Verhalten von Wahrscheinlichkeitsverteilungen liefern.
Anwendungsgebiete
Die Wahrscheinlichkeitstheorie entstand aus dem Problem der gerechten Verteilung des Einsatzes bei abgebrochenen Glücksspielen. Auch andere frühe Anwendungen stammen aus dem Bereich des Glücksspiels.
Heute ist die Wahrscheinlichkeitstheorie eine Grundlage der Statistik. Die angewandte Statistik nutzt Ergebnisse der Wahrscheinlichkeitstheorie, um Umfrageergebnisse zu analysieren oder Wirtschaftsprognosen zu erstellen.
Große Bereiche der Physik wie die Thermodynamik und die Quantenmechanik nutzen die Wahrscheinlichkeitstheorie zur theoretischen Beschreibung ihrer Resultate.
Sie ist ferner die Grundlage für mathematische Disziplinen wie die Zuverlässigkeitstheorie, die Erneuerungstheorie und die Warteschlangentheorie und das Werkzeug zur Analyse in diesen Bereichen.
Auch in der Mustererkennung ist die Wahrscheinlichkeitstheorie von zentraler Bedeutung.
Wahrscheinlichkeitstheorie in der Schule
Aufgrund ihrer vielseitigen Anwendungsbereiche und des Alltagsbezugs bereits junger Schüler wird die Wahrscheinlichkeitstheorie ab Klasse 1 in allen Schulformen im Rahmen des Mathematikunterrichts gelehrt. Geht es in der Grundschule noch darum, Grundbegriffe der Wahrscheinlichkeitsrechnung kennenzulernen und erste Zufallsexperimente hinsichtlich ihrer Gewinnchancen zu bewerten[1], wird in der Sekundarstufe I zunehmend der Wahrscheinlichkeitsbegriff analytisch in seiner Vielseitigkeit betrachtet und es stehen zunehmend komplexere Zufallsexperimente im Zentrum des Interesses[2]. In der Sekundarstufe II werden die Vorkenntnisse um spezifische Aspekte wie Bernoulliketten, bedingte Wahrscheinlichkeit und Laplace-Experimente erweitert[3].
Siehe auch
Literatur (Auswahl)
- Robert B. Ash: Real Analysis and Probability (= Probability and Mathematical statistics. Band 11.). Academic Press, Inc., New York (u. a.) 1972, ISBN 0-12-065201-3. MR0474442
- Krishna B. Athreya, Soumendra N. Lahiri: Measure Theory and Probability Theory. Springer Verlag, New York 2006, ISBN 978-0-387-32903-1. MR2247694
- Heinz Bauer: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. 4. Auflage. de Gruyter, Berlin 1991, ISBN 3-11-012191-3.
- Heinz Bauer: Wahrscheinlichkeitstheorie. 5., durchgesehene und verbesserte Auflage. de Gruyter, Berlin, New York 2002, ISBN 3-11-017236-4.MR1902050
- Kai Lai Chung: A Course in Probability Theory. Academic Press, San Diego (u. a.) 2001, ISBN 0-12-174151-6. MR1796326
- Bruno de Finetti: Wahrscheinlichkeitstheorie. Einführende Synthese mit kritischem Anhang. 4. Auflage. R. Oldenbourg Verlag, München (u. a.) 1981, ISBN 3-486-44701-7. MR0742141
- Harald Cramér: Mathematical Methods of Statistics (= Princeton Mathematical Series). 11. Auflage. Princeton University Press, Princeton 1966.
- Richard M. Dudley: Real Analysis and Probability (= Cambridge Studies in Advanced Mathematics. Band 74). Cambridge University Press, Cambridge 2002, ISBN 0-521-00754-2. MR1932358
- P. Gänssler, W. Stute: Wahrscheinlichkeitstheorie (= Hochschultext. Band 91). Springer Verlag, Berlin Heidelberg, New York 1977, ISBN 3-540-08418-5. MR0501219
- Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik (= Hochschulbücher für Mathematik. Band 40). 8. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1976.
- Boris Wladimirowitsch Gnedenko: Lehrbuch der Wahrscheinlichkeitstheorie. Verlag Harri Deutsch, Thun, Frankfurt am Main 1997, ISBN 3-8171-1531-8.
- Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 5. Auflage. de Gruyter, 2015, ISBN 978-3-11-035969-5.
- J. Hoffmann-Jørgensen: Probability with a View toward Statistics. Volume I (= Chapman & Hall Probability Series. Band 91). Chapman and Hall, New York 1994, ISBN 0-412-05221-0. MR1278485
- Achim Klenke: Wahrscheinlichkeitstheorie. 3., überarbeitete und ergänzte Auflage. Springer Spektrum, Berlin, Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-6.
- Oleg Klesov: Limit Theorems for Multi-Indexed Sums of Random Variables. Springer Verlag, Heidelberg, New York, Dordrecht, London 2014, ISBN 978-3-662-44387-3, doi:10.1007/978-3-662-44388-0. MR3244237
- A. Kolmogoroff: Grundbegriffe der Wahrscheinlichkeitsrechnung. Reprint (= Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 3). Springer Verlag, Berlin, Heidelberg, New York 1973, ISBN 3-540-06110-X. MR0494348
- A. Kolmogoroff: Über die Summen durch den Zufall bestimmter unabhängiger Größen. In: Mathematische Annalen. Band 99, 1928, S. 309–319, doi:10.1007/BF01459098. MR1512588
- A. J. Khintchine und A. N. Kolmogoroff: Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden. In: Recueil mathématique de la Société mathématique de Moscou [Matematicheskii Sbornik]. Band 32, 1925, S. 668–677.
- Ulrich Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Für Studium, Berufspraxis und Lehramt (= Vieweg Studium: Aufbaukurs Mathematik). 8. erweiterte Auflage. Vieweg, Wiesbaden 2005, ISBN 3-8348-0063-5.
- Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung (= Springer-Lehrbuch). 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin, Heidelberg 2014, ISBN 978-3-642-45386-1, doi:10.1007/978-3-322-96418-2.
- R. G. Laha, V. K. Rohatgi: Probability Theory (= Wiley Series in Probability and Mathematical Statistics). John Wiley & Sons, New York (u. a.) 1979, ISBN 0-471-03262-X. MR0534143
- Michel Ledoux, Michel Talagrand: Probability in Banach Spaces. Isoperimetry and Processes (= Ergebnisse der Mathematik und ihrer Grenzgebiete (3. Folge). Band 23). Springer Verlag, Berlin (u. a.) 1991, ISBN 3-540-52013-9. MR1102015
- Richard von Mises: Probability, Statistics and Truth. Reprint of the 1957 English edition. Dover Publications, Inc., New York 1981, ISBN 0-486-24214-5. MR0668875
- Jacques Neveu: Mathematische Grundlagen der Wahrscheinlichkeitstheorie. Aus dem Französischen übersetzt von Karl Bosch. R. Oldenbourg Verlag, München, Wien 1969. MR0245056
- Alfréd Rényi: Wahrscheinlichkeitsrechnung. Mit einem Anhang über Informationstheorie (= Hochschulbücher für Mathematik. Band 54). 5. Auflage. Deutscher Verlag der Wissenschaften, Berlin 1977. MR0474442
- A. N. Širjaev: Wahrscheinlichkeit (= Hochschulbücher für Mathematik. Band 91). Deutscher Verlag der Wissenschaften, Berlin 1988, ISBN 3-326-00195-9. MR0967761
- Vladimir Spokoiny, Thorsten Dickhaus: Basics of Modern Mathematical Statistics (= Springer Texts in Statistics). Springer-Verlag, Heidelberg, New York, Dordrecht, London 2015, ISBN 978-3-642-39908-4. MR3289985
- J. V. Uspensky: Introduction to Mathematical Probability. MacGraw-Hill Book Company, Inc., New York, London 1937.
- N. N. Vakhania, V. I. Tarieladze, S. A. Chobanyan: Probability Distributions on Banach Spaces (= Mathematics and its Applications (Soviet Series). Band 14). D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokio 1987, ISBN 90-277-2496-2.
- Walter Vogel: Wahrscheinlichkeitstheorie (= Studia Mathematica. Band XXII). Vandenhoeck & Ruprecht, Göttingen 1970. MR0286145
Weblinks
Einzelnachweise
- ↑ https://kultusministerium.hessen.de/schulsystem/bildungsstandards-kerncurricula-und-lehrplaene/kerncurricula/primarstufe/mathematik
- ↑ https://kultusministerium.hessen.de/schulsystem/bildungsstandards-kerncurricula-und-lehrplaene/kerncurricula/sekundarstufe-i/mathematik
- ↑ https://kultusministerium.hessen.de/schulsystem/bildungsstandards-kerncurricula-und-lehrplaene/kerncurricula/gymnasiale-oberstufe-12