In der Mathematischen Logik und der Theoretischen Informatik steht die Bezeichnung Reduktionssystem, oder abstraktes Reduktionssystem, abgekürzt ARS, für eine Verallgemeinerung von Termersetzungssystemen. In seiner einfachsten Form ist ein ARS eine Menge von Objekten zusammen mit einer binären Relation, die gewöhnlich mit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} bezeichnet wird. Trotz seiner Einfachheit genügt ein ARS zur Beschreibung wichtiger Eigenschaften von Termersetzungssystemen, wie z. B. Normalformen, Terminiertheit und verschiedene Begriffe der Konfluenz.
Historisch hat es einige verschiedene Abstrahierungen der Termersetzung gegeben, jede mit ihren Besonderheiten. Die heute am meisten verwendete Formalisierung, der hier gefolgt wird, beruht auf den Arbeiten von Gérard Huet (1980).[1]
Definition
Ein ARS besteht aus einer Menge A, den Objekten, zusammen mit einer binären Relation auf A, üblicherweise mit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} bezeichnet. Diese Relation heißt Reduktionsrelation oder einfach Reduktion.[2]
Als mathematisches Objekt ist ein ARS das gleiche wie ein unmarkiertes Transitionssystem. Dennoch unterscheiden sich Schwerpunkt und Terminologie in diesen beiden Bereichen: In einem Transitionssystem ist man daran interessiert, die Markierungen als Aktionen zu deuten, während in einem ARS der Fokus darauf liegt, wie Objekte in andere transformiert (reduziert) werden.[3]
Beispiel
Die Menge der Objekte sei T = {a, b, c} und die binäre Relation → sei wie folgt definiert: → Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \{(a,b),(b,a),(a,c),(b,c)\}} ; das schreibt man üblicherweise als
Liest man dies als Regeln, durch die Elemente in andere transformiert werden können, dann sieht man, dass sowohl a als auch b in c transformiert (reduziert) werden können. Dies ist offenbar eine wichtige Eigenschaft des Systems. c ist in gewisser Weise ein "einfachstes" Objekt des Systems, da keine der Regeln auf c angewendet werden kann, um dieses Element weiter zu transformieren.
Grundlegende Begriffe
Das obige Beispiel führt zu einigen wichtigen Begriffen im Rahmen eines ARS.[4]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{*}{\rightarrow}} ist die transitive Hülle von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow \cup =} , wobei = die Identität ist; d. h. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{*}{\rightarrow}} ist die kleinste Quasiordnung (reflexive und transitive Relation), die Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} enthält. Sie ist auch die reflexive und transitive Hülle von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} .
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow} ist Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow \cup \rightarrow^{-1}} , d. h. die Vereinigung der Relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} mit ihrer inversen Relation; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow} wird auch als symmetrische Hülle von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} bezeichnet.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{*}{\leftrightarrow}} ist die transitive Hülle von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \leftrightarrow \cup =} , d. h. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{*}{\leftrightarrow}} ist die kleinste Äquivalenzrelation, die Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} enthält. Sie wird auch als reflexive transitive symmetrische Hülle von Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} bezeichnet.
Normalformen und das Wortproblem
Ein Objekt x in A heißt reduzibel, wenn es ein von x verschiedenes Objekt y in A gibt mit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \rightarrow y} ; andernfalls heißt es irreduzibel oder eine Normalform. Ein Objekt y heißt Normalform von x, wenn Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \stackrel{*}{\rightarrow} y} gilt und y irreduzibel ist. Wenn x eine eindeutige Normalform besitzt, dann wird diese mit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\downarrow} bezeichnet.
Im Beispiel oben ist c eine Normalform von a und von b. Da a und b reduzibel sind, ist c sogar die einzige Normalform dieser Elemente, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c = a\downarrow = b\downarrow} . Wenn jedes Objekt mindestens eine Normalform besitzt, heißt das ARS normalisierend.
Eines der wichtigen Probleme, das im Kontext eines ARS formuliert werden kann, ist das Wortproblem: Gegeben x und y, sind diese beiden Objekte äquivalent unter der Relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{*}{\leftrightarrow}} ? Dies ist ein sehr allgemeiner Rahmen für das Wortproblem; so ist z. B. das Wortproblem für Gruppen ein Spezialfall des ARS-Wortproblems. Das Wortproblem ist einfacher zu behandeln, wenn es eindeutige Normalformen gibt: in diesem Fall gilt, dass zwei Objekte mit gleicher Normalform äquivalent unter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{*}{\leftrightarrow}} sind. Das Wortproblem für ein ARS ist im Allgemeinen unentscheidbar.
Für die Untersuchung der Frage, ob Normalformen existieren, sind die Begriffe der Church-Rosser-Eigenschaft und der Konfluenz von zentraler Bedeutung.[5]
Quellen
- Franz Baader, Tobias Nipkow: Term Rewriting and All That. Cambridge University Press, 1998. Für Anfänger geeignet.
- Nachum Dershowitz and Jean-Pierre Jouannaud Rewrite Systems, Chapter 6 in Jan van Leeuwen (Ed.), Handbook of Theoretical Computer Science. Band B: Formal Models and Semantics. Elsevier/ MIT Press, 1990, ISBN 0-444-88074-7, S. 243–320.
- Ronald V. Book, Friedrich Otto: String-rewriting Systems. Springer, Berlin 1993. Kapitel 1: Abstract reduction systems. ISBN 0-387-97965-4.
- Marc Bezem, J. W. Klop, Roel de Vrijer: Term rewriting systems. Cambridge University Press, 2003, ISBN 0-521-39115-6, Kapitel 1. (Dies ist eine umfangreiche Monografie).
- John Harrison: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, 2009, ISBN 978-0-521-89957-4, Kapitel 4: Equality.
- Gérard Huet: Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. In: Journal of the ACM (JACM), Band 27, Nr. 4, Oktober 1980, S. 797–821.
Einzelnachweise
- ↑ Ronald V. Book, Friedrich Otto: String-rewriting Systems. S. 9.
- ↑ Ronald V. Book, Friedrich Otto: String-rewriting Systems. S. 10.
- ↑ Marc Bezem, J. W. Klop, Roel de Vrijer: Term rewriting systems. S. 7–8.
- ↑ Franz Baader, Tobias Nipkow: Term Rewriting and All That. S. 8–9.
- ↑ Franz Baader, Tobias Nipkow: Term Rewriting and All That. S. 11 f.